Myocardial pathology segmentation (MyoPS) can be a prerequisite for the accurate diagnosis and treatment planning of myocardial infarction. However, achieving this segmentation is challenging, mainly due to the inadequate and indistinct information from an image. In this work, we develop an end-to-end deep neural network, referred to as MyoPS-Net, to flexibly combine five-sequence cardiac magnetic resonance (CMR) images for MyoPS. To extract precise and adequate information, we design an effective yet flexible architecture to extract and fuse cross-modal features. This architecture can tackle different numbers of CMR images and complex combinations of modalities, with output branches targeting specific pathologies. To impose anatomical knowledge on the segmentation results, we first propose a module to regularize myocardium consistency and localize the pathologies, and then introduce an inclusiveness loss to utilize relations between myocardial scars and edema. We evaluated the proposed MyoPS-Net on two datasets, i.e., a private one consisting of 50 paired multi-sequence CMR images and a public one from MICCAI2020 MyoPS Challenge. Experimental results showed that MyoPS-Net could achieve state-of-the-art performance in various scenarios. Note that in practical clinics, the subjects may not have full sequences, such as missing LGE CMR or mapping CMR scans. We therefore conducted extensive experiments to investigate the performance of the proposed method in dealing with such complex combinations of different CMR sequences. Results proved the superiority and generalizability of MyoPS-Net, and more importantly, indicated a practical clinical application.
translated by 谷歌翻译
多模式心脏成像在心血管疾病患者的治疗中起关键作用。它允许互补的解剖学,形态学和功能信息,提高诊断准确性,并提高心血管干预和临床结果的疗效。多模式心脏图像的完全自动化处理和定量分析可能会对临床研究和基于证据的患者管理产生直接影响。但是,这些需要克服重大挑战,包括模式间未对准和寻找最佳方法来整合来自不同模式的信息。本文旨在对心脏病学,计算方法,验证策略,相关临床工作流程和未来观点的多模式成像进行全面综述。对于计算方法,我们对这三个任务(即注册,融合和分割)有利,通常涉及多模式成像数据,\ textit {结合来自不同模式的信息或跨模态传输信息的信息}。该评论强调,多模式性心脏成像数据具有广泛适用性的诊所,例如跨体瓣植入指南,心肌生存能力评估和导管消融疗法及其患者选择。然而,许多挑战仍未解决,例如缺失模态,成像和非成像数据的组合以及统一的分析和不同方式的表示。定义完善的技术如何适合临床工作流程以及它们引入了多少其他相关信息,这也有工作要做。这些问题可能会继续是一个积极的研究领域,并且将来要回答的问题。
translated by 谷歌翻译
由于缺乏对未标记的结构的监督,部分监督的学习对于细分可能是具有挑战性的,并且直接应用完全监督学习的方法可能导致不兼容,这意味着地面真相不在损失功能的解决方案集合中。为了应对挑战,我们提出了一个深入的兼容学习(DCL)框架,该框架使用仅带有部分结构的图像来训练单个多标签分割网络。我们首先将部分监督的分割制定为与缺少标签兼容的优化问题,并证明其兼容性。然后,我们为模型配备有条件的分割策略,以将标签从多个部分注销的图像传播到目标。此外,我们提出了一种双重学习策略,该策略同时学习了标签传播的两个相反的映射,以对未标记的结构进行实质性的监督。这两种策略分别为兼容形式,分别称为条件兼容性和双重兼容性。我们显示该框架通常适用于常规损失功能。该方法对现有方法具有重大的性能提高,尤其是在只有小型培训数据集的情况下。三个细分任务的结果表明,所提出的框架可以实现匹配完全监督模型的性能。
translated by 谷歌翻译
分布式学习在医学图像分析中表现出了巨大的潜力。它允许使用具有隐私保护的多中心培训数据。但是,由于不同的成像供应商和注释协议,本地中心的数据分布可能会彼此不同。这种变化降低了基于学习的方法的性能。为了减轻影响,已经提出了两组方法针对不同的目标,即全球方法和个性化方法。前者的目的是改善来自看不见的中心(称为通用数据)的所有测试数据的单个全局模型的性能;而后者则针对每个中心的多个模型(称为本地数据)。但是,几乎没有研究以同时实现这两个目标。在这项工作中,我们提出了一个新的分布式学习框架,该框架弥合了两组之间的差距,并提高了通用和本地数据的性能。具体而言,我们的方法通过分布条件的适应矩阵将通用数据和局部数据的预测分解。多中心左心房(LA)MRI分割的结果表明,我们的方法表明,在通用和局部数据上的现有方法比现有方法表现出色。我们的代码可从https://github.com/key1589745/decouple_predict获得
translated by 谷歌翻译
尽管受到监督的深度学习在医学图像细分方面取得了有希望的表现,但许多方法不能很好地概括在看不见的数据上,从而限制了其现实世界的适用性。为了解决这个问题,我们提出了一个基于学习的贝叶斯框架,该框架共同对图像和标签统计数据进行建模,并利用医学图像的域 - iRrelevant轮廓进行分割。具体而言,我们首先将图像分解为轮廓和基础的组成部分。然后,我们将预期标签建模为仅与轮廓相关的变量。最后,我们开发了一个变异的贝叶斯框架,以推断这些变量的后验分布,包括轮廓,基础和标签。该框架是通过神经网络实现的,因此称为深贝叶斯分割。跨序列心脏MRI分割的任务的结果表明,我们的方法为模型推广设定了新的最新技术。特别是,在T2图像上良好训练的LGE MRI训练的贝斯模型超过了其他型号,即在平均骰子方面超过0.47。我们的代码可在https://zmiclab.github.io/projects.html上找到。
translated by 谷歌翻译
Multimodal groupwise registration aligns internal structures in a group of medical images. Current approaches to this problem involve developing similarity measures over the joint intensity profile of all images, which may be computationally prohibitive for large image groups and unstable under various conditions. To tackle these issues, we propose BInGo, a general unsupervised hierarchical Bayesian framework based on deep learning, to learn intrinsic structural representations to measure the similarity of multimodal images. Particularly, a variational auto-encoder with a novel posterior is proposed, which facilitates the disentanglement learning of structural representations and spatial transformations, and characterizes the imaging process from the common structure with shape transition and appearance variation. Notably, BInGo is scalable to learn from small groups, whereas being tested for large-scale groupwise registration, thus significantly reducing computational costs. We compared BInGo with five iterative or deep learning methods on three public intrasubject and intersubject datasets, i.e. BraTS, MS-CMR of the heart, and Learn2Reg abdomen MR-CT, and demonstrated its superior accuracy and computational efficiency, even for very large group sizes (e.g., over 1300 2D images from MS-CMR in each group).
translated by 谷歌翻译
心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译
精确的心脏计算,多种式图像的分析和建模对于心脏病的诊断和治疗是重要的。晚期钆增强磁共振成像(LGE MRI)是一种有希望的技术,可视化和量化心肌梗塞(MI)和心房疤痕。由于LGE MRI的低图像质量和复杂的增强图案,MI和心房疤痕的自动化量可能是具有挑战性的。此外,与带金标准标签的其他序列LGE MRIS相比特别有限,这表示用于开发用于自动分割和LGE MRIS定量的新型算法的另一个障碍。本章旨在总结最先进的基于深度学习的多模态心脏图像分析的先进贡献。首先,我们向基于多序心脏MRI的心肌和病理分割介绍了两个基准工作。其次,提出了两种新的左心房瘢痕分割和从LGE MRI定量的新型框架。第三,我们为跨型心脏图像分割提出了三种无监督的域适应技术。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)的左心房(LA)和心房瘢痕分割是临床实践中的重要任务。 %,引导消融治疗和预测心房颤动(AF)患者的治疗结果。然而,由于图像质量差,各种La形状,薄壁和周围增强区域,自动分割仍然具有挑战性。以前的方法通常独立解决了这两个任务,并忽略了洛杉矶和疤痕之间的内在空间关系。在这项工作中,我们开发了一个新的框架,即atrialjsqnet,其中La分段,在La表面上的瘢痕投影以及疤痕量化,在端到端的样式中进行。我们通过明确的表面投影提出了一种形状注意(SA),以利用LA和LA瘢痕之间的固有相关性。具体而言,SA方案嵌入到多任务架构中以执行联合LA分段和瘢痕量化。此外,引入了空间编码(SE)丢失以包含目标的连续空间信息,以便在预测的分割中减少嘈杂的斑块。我们从Miccai2018 La挑战中评估了60 LGE MRIS上提出的框架。在公共数据集上的广泛实验表明了拟议的ATRIALJSQNET的效果,从而实现了最先进的竞争性能。明确探索了LA分割和瘢痕量化之间的相关性,并对这两个任务显示出显着的性能改进。一旦稿件接受通过https://zmiclab.github.io/projects.html,就会公开发布的代码和结果。
translated by 谷歌翻译